
Building Fast, Reliable and Adaptive

Software for Computational Science

Alistair Rendell, Joseph Antony, Warren Armstrong,

Pete Janes and Rui Yang

Dept. Of Computer Science

Australian National University

As we have been hearing...

After a decade of incremental change we now have:

� Multicore on the desktop

� Easily (?) programmable GPUs
– NVIDIA GTX 8800 GPU with CUDA programming interface

� Special purpose processors
– Cell Broadband Engine/Playstation 3, cheap FPGAs

� Machines like the Sun ROCKS system with transactional memory

Given this hardware maze

� How do we construct computational science applications that are:
– Fast

– Reliable

– Adaptive

� Some overlap with goals of SciDAC Performance Engineering
Research Institute (PERI)

Fast, Reliable and Adaptive

� RELIABLE: Numerically reliable on petaflop systems

– Use of interval arithmetic to place rigorous bounds on

complex numerical calculations

� FAST: Performance models to predict the effect of

runtime modifications

– Models to capture cache usage and memory placement

effects

� ADAPTIVE: Able to respond to a changing runtime

environment

– Use of dynamic code modification to alter the behavior of a

running application and machine learning to predict those

changes

RELIABLE

Interval Arithmetic to Track Numerical Errors

Objective: To track rigorously the truncation and rounding

errors that occur in large scale electronic structure

computations?

Computational Errors

� Modeling approximations

– Classical instead of quantum mechanics

� Truncation errors

– Due to algorithmic approximations, e.g. series truncation

� Rounding errors

– ~10-8 single precision, ~10-16 double precision increases with

operations

– Subtraction particularly problematic

!4

1

!3

1

!2

1

!1

1
1 ++++≈e

With petaflop computers performing 1015 operations per
second how will we know if anything we compute is correct?

Precision ≠≠≠≠ Accuracy

� Rump’s example

33096

77617

)2/(5.5)212111()75.333(8422262

=

=

++−−+−=

b

a

babbbaabaf

32 bit: f = 1.172604

64 bit: f = 1.1726039400531786

128 bit: f = 1.1726039400531786318588349045201838

correct: f = -.827396059946821368141165095479816...

Intervals

� Not new, concept been around since early floating point
– Sun Fortran compiler provides an interval data type

� Guaranteed error bounds computed with results

� Represented as two numbers

� Interval arithmetic: given two intervals

{ }
{ }/,,,

;

×−+∈
⊂⊂≡

o

oo YyXxyxYX

{ }
)(),(where

],[
εεε +=−=±≡

≤≤=
xbxax

bxaxba
)))

)],,,max(

),,,,[min(],[],[

],[],[],[

yxyxyxyx

yxyxyxyxyyxx

yxyxyyxx

××××

××××=×

++=+

Before you ask...

� Not great, but at least we know we have a problem!

33096

77617

)2/(5.5)212111()75.333(8422262

=

=

++−−+−=

b

a

babbbaabaf

32 Bit: [-1.901..E+30,2.535..E+30] width 1E60

64 Bit: [-4.722..E+21,5.902..E+21] width 1E42

128 Bit: [-5.118..E+03,4.097..E+03] width 1E06

correct: f = -.827396059946821368141165095479816...

• Rump’s Example Using Intervals

Intervals in Electronic Structure Methods

� At the core of most algorithms for computing the sorts of integrals
used in electronic structure codes is evaluation of the incomplete
gamma function:

� The value of this is given by an infinite series

� Programs use either finite series evaluation or an asymptotic
approximation
– Switch depends on value of T for a given value of m

� To speed evaluation interpolation is used
– Chebyshev and Taylor interpolation over uniformly discretized domain

∫
−=

1

0

2 2

)(dtetTF
Ttm

m

Fm(T) Evaluation Errors

� Fundamental approximations made before any

computation has begun

– Finite series v asymptotic approximation

– Type of interpolation

These give rise to Truncation errors

� How we perform the numerical operations

– Order that we manipulate the data

– Simple summation v use of compensated summation in

series evaluation

These give rise to Rounding Errors

� Using interval arithmetic we can bound both errors

Fm(T): Average Relative Error (x1e15)

� Defined as

– Interval width divided by absolute value of midpoint

0 4 8 12

ChebyA Alg1 83 4300 22000 67000

Alg2 32 1600 7900 23000

ChebyB Alg1 14 17 19 21

Alg2 6 7 8 9

ChebyC Alg1 15 18 20 21

Alg2 7 9 9 10

TaylorA Alg1 14 17 18 20

Alg2 5 6 7 8

TaylorB Alg1 14 17 19 20

Alg2 6 7 8 9

m

Scheme

Evaluation

Current Work

� Different approaches to accurate floating point summation

– Evaluation of the electrostatic energy for a group of point

charges

– Comparison of pairwise summation with fast multipole methods

� Extend Fm(T) to full integral evaluation and then to a

complete Hartree-Fock (HF) code

– We have looked at alternative approaches to integral

evaluation, full HF is under development

� Other uses for intervals

– There are novel interval algorithms for global optimization,

which we are exploring in the context of solving the HF

equations and locating the global minimum on a potential

energy surface

FAST

Performance Models for Cache Behavior

Objective: To develop a simple model for cache behavior that

is accurate enough to provide predictive information for use

in, for example algorithm selection or cache blocking?

Cache Performance Models

� Essentially two approaches

– Analytical or Simulation Based

� Analytical

– Parameterize system to give empirical performance

estimates

– Fail to capture dynamic nature of code execution

� Simulation based

– Predict performance based on sequence of executable

instructions

– Instructions can be execution or trace driven

– 100-1000 times slower than execution on native hardware

Linear Performance Model (LPM)

� LPM ignores intricacies of program execution

– average the details into fitting parameters αααα and ββββ

– expect to work best for “similar” calculations

� How to obtain αααα and ββββ

– run different calculations with different input data sets

– run one calculation and alter cache usage to obtain different counts

– perform least squares fit from data

time = α×I_count + β×Cache_Miss

Fitted

Measured

Measured

Penaltiesαααα and ββββ

Level 1/2 Cache MissesCache_Miss

Instruction CountI_count

Test Case: Integral Evaluation

� In nearly every electronic structure calculation
– associated with electron/electron repulsion, electron/nuclei
attraction (what we compute using Fm(T))

– accounts for 80-90% of time in typical HF computation

� The PRISM integral evaluation algorithm computes
integrals in batches
– batches contain integrals of a similar type

� For large systems batches can become very large
– good for vector machine, poor for scalar/cache machine

� To enhance performance on scalar machines a
maximum batch size is imposed
– usually determined based on cache size in an ad-hoc
fashion

Counts as Function of Cache Blocking

AMD848 2.2Ghz 1MB L2 Cache

HF, H20/K+, 6-31++G(3df, 3pd) Basis

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

L1 Miss L2 Miss Instructions Cycles

L
o

g
(C

o
u

n
t)

2 32
64 256
512 1024

LPM Parameters by CPU

� Exp:

– Experimental data measured using lmbench

� Data averaged over 4 different calculations

CPU GHz Lim Avg STD Exp Avg STD

Athlon64 2.2 3 1.7 0.08 238 634.2 82.8

Opteron 2.2 3 1.7 0.03 300 385.9 55.9

EMT64T 3.0 3 1.0 0.08 442 115.5 24.1

Pentium 4 3.0 3 0.9 0.05 430 214.1 24.2

Pentium M 1.4 3 1.4 0.04 204 72.0 13.4

Apple G5 1.8 3 1.4 0.06 692 442.4 20.8

Instructions (1/α)α)α)α) Cache Misses (γ)γ)γ)γ)

per cycle (Cycles)

Accuracy of LPM (% Relative Error)

� Typical accuracy within 4% in total time

– some of the jobs run for over 1 hour

� In short

– we do surprisingly well when averaging over the intricate details of

cache and memory operations

CPU 1 2 3 4 5

Opteron 3.2 1.0 2.7 1.3 2.0

EM64T 2.7 1.4 2.0 2.7 0.7

Pentium4 2.3 1.8 2.7 0.5 2.2

Pentium M 2.0 0.8 1.9 1.0 2.6

G5 1.8 1.5 2.7 2.2 2.7

G5-Xserve 2.4 1.7 2.2 2.4 3.2

Molecular System

Use of the LPM: Architectural Studies

� Previous counts generated via hardware performance
counters
– We can also obtain counts using Cachegrind

� Cachegrind uses dynamic binary translation to
capture all memory references and map them onto a
user defined cache model

� Combine counts from Cachegrind with fitting
parameters to predict performance as a function of
cache architecture
– Cache size

– Line size

– Associativity

Effect of Cache Size and Line Size:

2.2GHz AMD Opteron System

Hardware

L1 Size 64KiB 64KiB 64KiB 64KiB 64KiB

L1 Line Size 64B 64B 32B 64B 64B

L2 Size 1MB 1MB 1MB 1MB 16MB

L2 Line size 64B 64B 64B 1024B 64B

Blocking Size 64KiW 64KiW 64KiW 64KiW 1MW

Icount/1E10 3.28 3.27 3.27 3.27 2.93

L2$Miss/1E6 9.77 7.03 7.03 3.2 0.04

Est Cycles/1E10 2.72 2.5 2.5 2.36 2.01

Cachegrind

Current Work

� Exploring the domain of applicability

– Fit for one system, but use on a very different

– Eg fit for HF with 6-31g basis but use for an MP2 calculation with a 6-

31++G(3df,3pd) basis

� Sensitivity of blocking factor to integral batch characteristics

– Should we use the same blocking factor for [ss|ss] integrals as for a

[dd|dd]

� Models to account for different latencies on NUMA

architectures

– On NUMA systems not all cache misses are equal

– We have done many experiments using specific memory and thread

placements to quantify these issues

– Extending Cachegrind to include a memory placement model

ADAPTIVE

Dynamic Modification to Running Program

Objective: To develop a software environment that is

responsive to changes in runtime conditions, simulation

state, or information gathered by from other processes in

the same system

Example: Find all particles within a

distance

� Method 1:

– Simple, but O(N2)

� Method 2:

– bound domain

– put particles into boxes

– only consider adjacent boxes

– More complex, but potentially O(N)

for i=2, N

for j=1, j<I

compute r_ij

if (r_ij < cutoff){accept}

end

end

If
part

icl
es

 ar
e m

oving w
hich

 m
eth

od is
 fa

ste
r

ca
n ch

an
ge w

ith
 tim

e

An artificial “Big Bang”

Optimal

Model Architecture

Application

Monitoring

Model Architecture

Application

Monitoring

Application

Multiple

Application

Processes

L
ea

rn

A
p
p
ly

Implementational Requirements

� Need to be able to insert sensors into application and

actuators to cause change

� Two possibilities:

– Dynamic code modification

– Use of a virtual machine (like JVM)

� We have been investigating use of DynInst (5.1)

� How do we decide on change?

– Preliminary work based on use of reinforcement learning

as this does not require a training set

Dynamic Code Modification with DynInst

Routine in

Application Code
Save Application

State
Instrumentation

Instrumentation

Instrumentation
Restore

Application StateRoutine in

Application Code

Base Trampoline Mini Trampoline

Overhead of using DynInst on x86

System

None Recursion Floating Point Rec+FP

Inline/loop header

Wall time (ns) 37 39 159 162

CPU cycles 108 115 476 498

Instructions 12 19 20 27

Inline/called function

Wall time (ns) 35 38 35 37

CPU cycles 102 109 102 109

Instructions 11 18 11 18

Outline/loop header

Wall time (ns) 37 39 160 168

CPU cycles 110 116 476 501

Instructions 15 24 23 32

Outline/called function

Wall time (ns) 35 38 35 38

CPU cycles 104 112 104 112

Instructions 14 23 14 23

Safety Checks

Current Work

� Rigorous benchmarking for other parts of DynInst

– Stopping/starting the code, copying data

� Investigating alternatives

– Consideration of LLVM

� Initial target

– Can we use reinforcement learning techniques to predict

the optimal format for a sparse matrix based on a few key

characteristics, and have the learner gather information

from multiple running processes

– Particularly interested in the sorts of sparse matrices that

appear in large electronic structure calculations

Concluding Remarks

� After several years of relatively small changes in CPU

architectures we are now seeing a flurry of new activity

– Massively multicore

– Heterogeneous

– Complex memory hierarchies

� There is a need to re-think how we develop our software for

these emerging systems

– Models to predict performance

– Quantifiable numerical errors

– Strategies to automate the code tuning and optimization process

� We have put forward some ideas, but it is early days and there

is much work left to do

Acknowledgements

� Australian Research Council Grants DP0558228,

LP0669726 and LP0774896

� Sun Microsystems for equipment and discussions

� Australian Partnership for Advanced Computing and

Alexander Technology for access to computing

resources

